metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-(3-Hydroxycyclobutane-1,1-dicarboxylato- $\kappa^2 O, O'$)bis(2-methylpyridine- κN)platinum(II)

Ming-Jin Xie,^a Yao Yu,^b Wei-Ping Liu,^b* Shu-Qian Hou^b and Xizhu Chen^b

^aDepartment of Chemistry, Yunnan University, Kunming, People's Republic of China, and ^bPlatinum-Based Drug Laboratory, Kunming Institute of Precious Metals, Kunming, People's Republic of China

Correspondence e-mail: xmj7193@yahoo.com.cn

Received 11 September 2007; accepted 9 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.022 Å; *R* factor = 0.053; *wR* factor = 0.150; data-to-parameter ratio = 19.0.

In the crystal structure of the title compound, $[Pt(C_6H_6O_4)-(C_6H_7N)_2]$, the platinum(II) ion is tetracoordinated in a square-planar coordination. The structure involves intra-molecular $C-H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Ali *et al.* (2002); Jakuper *et al.* (2003); Tu *et al.* (2004); Zhang *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} [\mathrm{Pt}(\mathrm{C_6H_6O_4})(\mathrm{C_6H_7N})_2] \\ M_r = 539.45 \\ \mathrm{Orthorhombic}, \ P2_12_12_1 \\ a = 9.5157 \ (7) \ \mathrm{\AA} \\ b = 13.1417 \ (9) \ \mathrm{\AA} \\ c = 15.2884 \ (11) \ \mathrm{\AA} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (APEX2; Bruker, 2004) $T_{\rm min} = 0.271, T_{\rm max} = 0.367$ $V = 1911.9 (2) Å^{3}$ Z = 4Mo Ka radiation $\mu = 7.37 \text{ mm}^{-1}$ T = 298 (2) K $0.24 \times 0.22 \times 0.17 \text{ mm}$

16189 measured reflections

 $R_{\rm int} = 0.054$

4511 independent reflections

3991 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	$\Delta \rho_{\rm max} = 4.96 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.151$	$\Delta \rho_{\rm min} = -2.22 \text{ e } \text{\AA}^{-3}$
S = 1.10	Absolute structure: Flack (1983)
4511 reflections	with 1810 Friedel pairs
238 parameters	Flack parameter: 0.03 (2)
H-atom parameters constrained	

Table 1Selected geometric parameters (Å, °).

	•	·	
Pt1-O1	1.992 (8)	Pt1-N1	2.005 (10)
Pt1-O2	2.001 (8)	Pt1-N2	2.008 (9)
O1-Pt1-O2	91.4 (4)	O1-Pt1-N2	177.7 (4)
O1-Pt1-N1	86.3 (4)	O2-Pt1-N2	87.1 (4)
O2-Pt1-N1	177.0 (5)	N1 - Pt1 - N2	95.3 (4)

Table 2		_	
Hydrogen-bond	geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C15-H15B\cdots O3$ $C12-H12A\cdots O2$	0.97	2.48	2.826 (16)	101
	0.96	2.58	3.170 (16)	120

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

This work was financially supported by Yunnan Natural Science Foundation (grant Nos. 20032C06 and 20052C0067M) and the National Science Foundation of Yunnan University (grant No. 2005Q002A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2138).

References

- Ali, M. S., Thurston, J. H., Whitmire, K. H. & Khokhar, A. R. (2002). Polyhedron, 21, 2659–2662.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jakuper, M. A., Galanski, M. & Keppler, B. K. (2003). Rev. Physiol. Biochem. Pharmacol. 146, 1–53.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tu, C., Wu, X. F., Liu, Q., Wang, X. Y., Xu, Q. & Guo, Z. J. (2004). Inorg. Chim. Acta, 357, 95–102.
- Zhang, J. Y., Liu, Q., Duan, C., Shao, Y., Ding, J., Miao, Z., You, X.-Z. & Guo, Z. (2002). J. Chem. Soc. Dalton Trans. pp. 591–594.

supplementary materials

Acta Cryst. (2007). E63, m2728 [doi:10.1107/S1600536807049513]

cis-(3-Hydroxycyclobutane-1,1-dicarboxylato- $\kappa^2 O, O'$)bis(2-methylpyridine- κN)platinum(II)

M.-J. Xie, Y. Yu, W.-P. Liu, S.-Q. Hou and X. Chen

Comment

In an attempt to overcome drawbacks of cisplatin, numerous analogues have been prepared and evaluated in a search for an alternativeactive agent. Among them, *cis*-diammine(1,1-cyclobutanedicarboxylato)platinum(II) (Carboplatin) is commonly used for the treatment of testicular and ovarian cancer as well as cervical, bladder and head and neck tumors. It has proven to be the only second-generation platinum complex commercially available worldwide at present (Jakuper *et al.*, 2003). But the application of Carboplatin in therapy is limited by the dose-dependent nephrotoxicity and other side effects. Therefore, the search for the new potent platinum complexes possessing high antitumor activity and lack of cross-resistance is needed. The title compound is a new soluble carboplatin analogue containing an asymmetric chelating malonate anion as its carrier and anticancer tests are presently being carried out.

The title complex consists of discrete monomeric units where the Pt(II) is coordinated by two crystallographically independent 2-methylpyridine ligands and 3-hydroxy-1,1-cyclobutanedicarboxylate anions with a square planar geometry (Table 1, Fig. 1) The 1,1-cyclobutanedicarboxylate ligand displays similar features to those described in the literature (Tu *et al.*, 2004; Zhang *et al.*, 2002; Ali *et al.*, 2002). The six-membered chelate ring built up of the Pt(II) atom and the 3-hydroxy-1,1-cyclobutanedicarboxylate anion adopts a boat conformation and the two 2-methylpyridine liagnds are oriented perpendicular to each other.

Experimental

Potassium tetrachloroplatinate(II) (5 g, 12 mmol) was dissolved in water (50 ml) and treated with KI (12 g, 72 mmol). After left in a dark for 30 min at room temperature, a solution of 2-methylpyridine (1.08 g, 12 mmol in 50 ml water) was added dropwise. The mixture was stirred for 4 h and the yellow precipitate was filtrated off. Then to a suspension of di(2-methylpyridine)PtI₂ (2.5 g, 0.044 mmol) in 75 ml water was added (1.36 g, 3.65 mmol) disilver 3-hydroxy-1,1-cyclobu-tanedicarboxylate, and the reaction mixture was stirred at 323 K for 72 h. Then the AgI formed was filtrated off and the filtrate was condensed at 313 K under reduced pressure to 5 ml, and a colourless crystalline product was precipitated. The compound was recrystallized from water to obtain crystals suitable for X-ray structure analysis.

Refinement

All H atoms were initially located in a difference Fourier map but were positioned with idealized geometry and refined isotropic with $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 for methyl H atoms) using a riding model with C—H = 0.93 and 0.97 Å).

Figures

Fig. 1. Molecular structure of (I) with the atomic labelling scheme. Displacement ellipsoids are shown at the 30% probability level.

cis-(3-Hydroxycyclobutane-1,1-dicarboxylato- $\kappa^2 O, O'$)bis(2-methylpyridine- κN)platinum(II)

Crystal data	
[Pt(C ₆ H ₆ O ₄)(C ₆ H ₇ N) ₂]	$F_{000} = 1040$
$M_r = 539.45$	$D_{\rm x} = 1.874 {\rm ~Mg~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P2ac2ab	Cell parameters from 4511 reflections
<i>a</i> = 9.5157 (7) Å	$\theta = 2.0 - 28.3^{\circ}$
b = 13.1417 (9) Å	$\mu = 7.37 \text{ mm}^{-1}$
c = 15.2884 (11) Å	T = 298 (2) K
V = 1911.9 (2) Å ³	Block, colourless
Z = 4	$0.24 \times 0.22 \times 0.17 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	4511 independent reflections
Radiation source: fine-focus sealed tube	3991 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
T = 298(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: numerical (APEX2; Bruker, 2004)	$h = -12 \rightarrow 12$
$T_{\min} = 0.271, T_{\max} = 0.367$	$k = -17 \rightarrow 16$
16189 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.1024P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.151$	$(\Delta/\sigma)_{\text{max}} = 0.002$
<i>S</i> = 1.10	$\Delta \rho_{max} = 4.96 \text{ e } \text{\AA}^{-3}$

4511 reflections	$\Delta \rho_{\rm min} = -2.22 \ {\rm e} \ {\rm \AA}^{-3}$
238 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with how many Friedel pairs?
Secondary atom site location: difference Fourier map	Flack parameter: 0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Pt1	0.11187 (4)	0.91536 (3)	0.94090 (2)	0.03526 (14)
N1	0.2783 (10)	0.9230 (10)	0.8607 (6)	0.048 (2)
N2	0.2200 (10)	0.8622 (7)	1.0440 (6)	0.0370 (19)
01	-0.0012 (9)	0.9638 (7)	0.8395 (5)	0.0448 (19)
O2	-0.0581 (9)	0.9143 (8)	1.0179 (6)	0.0482 (19)
O3	-0.2424 (12)	1.0008 (9)	1.0680 (8)	0.073 (3)
O4	-0.1914 (11)	1.0397 (9)	0.7953 (6)	0.063 (3)
05	-0.1137 (19)	1.3303 (7)	0.9751 (9)	0.086 (4)
Н5	-0.1290	1.3371	0.9226	0.104*
C1	0.3516 (16)	1.0153 (14)	0.8581 (11)	0.066 (4)
H1	0.3235	1.0688	0.8939	0.079*
C2	0.4629 (17)	1.0274 (15)	0.8039 (12)	0.073 (5)
H2	0.5208	1.0841	0.8092	0.087*
C3	0.4895 (19)	0.9557 (18)	0.7413 (14)	0.085 (6)
Н3	0.5567	0.9695	0.6988	0.103*
C4	0.4248 (17)	0.8695 (16)	0.7389 (10)	0.073 (5)
H4	0.4459	0.8217	0.6960	0.088*
C5	0.3196 (16)	0.8488 (11)	0.8039 (9)	0.057 (3)
C6	0.249 (2)	0.7510 (17)	0.8104 (16)	0.123 (10)
H6A	0.2251	0.7379	0.8704	0.185*
H6B	0.3105	0.6983	0.7895	0.185*
H6C	0.1651	0.7520	0.7757	0.185*
C7	0.3179 (18)	0.9235 (11)	1.0828 (10)	0.064 (4)
H7	0.3370	0.9855	1.0560	0.077*
C8	0.388 (2)	0.9018 (15)	1.1558 (13)	0.093 (7)
H8	0.4519	0.9479	1.1795	0.111*
С9	0.3624 (18)	0.8037 (12)	1.1973 (13)	0.077 (5)
H9	0.4081	0.7839	1.2483	0.092*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C10	0.2683 (16)	0.7436 (11)	1.1568 (10)	0.061 (3)
H10	0.2503	0.6800	1.1810	0.073*
C11	0.1944 (12)	0.7709 (8)	1.0794 (7)	0.039 (2)
C12	0.0894 (18)	0.6987 (9)	1.0333 (10)	0.065 (4)
H12A	-0.0046	0.7235	1.0416	0.098*
H12B	0.0974	0.6317	1.0578	0.098*
H12C	0.1101	0.6962	0.9719	0.098*
C13	-0.1430 (12)	0.9925 (10)	1.0153 (7)	0.042 (3)
C14	-0.1268 (10)	1.0706 (7)	0.9431 (7)	0.036 (2)
C15	-0.2338 (13)	1.1622 (9)	0.9461 (9)	0.047 (3)
H15A	-0.2537	1.1920	0.8893	0.057*
H15B	-0.3198	1.1475	0.9777	0.057*
C16	-0.1254 (17)	1.2203 (9)	0.9991 (10)	0.059 (4)
H16	-0.1411	1.2118	1.0621	0.070*
C17	-0.0093 (13)	1.1523 (8)	0.9672 (9)	0.044 (3)
H17A	0.0549	1.1303	1.0127	0.053*
H17B	0.0412	1.1789	0.9170	0.053*
C18	-0.1097 (14)	1.0224 (8)	0.8538 (7)	0.039 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Pt1	0.0451 (2)	0.02367 (19)	0.0370 (2)	0.00148 (15)	0.00061 (16)	-0.00037 (16)
N1	0.045 (5)	0.059 (7)	0.041 (5)	0.008 (5)	0.002 (4)	0.006 (6)
N2	0.041 (5)	0.027 (4)	0.043 (5)	-0.001 (3)	-0.004 (4)	0.001 (4)
01	0.052 (5)	0.052 (5)	0.030 (4)	0.010 (4)	-0.003 (3)	-0.004 (3)
O2	0.049 (4)	0.042 (4)	0.053 (5)	0.006 (4)	0.011 (4)	0.016 (5)
03	0.075 (6)	0.060 (6)	0.085 (7)	0.011 (5)	0.044 (6)	0.015 (6)
O4	0.072 (7)	0.065 (6)	0.052 (5)	0.014 (5)	-0.012 (5)	-0.002 (5)
05	0.131 (11)	0.029 (5)	0.099 (8)	0.010 (6)	0.038 (9)	-0.013 (5)
C1	0.061 (9)	0.069 (10)	0.068 (9)	-0.014 (7)	0.006 (7)	-0.009 (8)
C2	0.057 (9)	0.078 (11)	0.083 (12)	-0.016 (8)	0.007 (8)	0.006 (9)
C3	0.055 (9)	0.110 (15)	0.091 (13)	-0.001 (10)	0.033 (9)	0.028 (11)
C4	0.067 (10)	0.100 (13)	0.052 (8)	-0.010 (9)	0.011 (7)	-0.011 (8)
C5	0.066 (8)	0.050 (8)	0.055 (7)	-0.006 (6)	-0.002 (6)	-0.014 (6)
C6	0.134 (18)	0.085 (14)	0.15 (2)	-0.036 (14)	0.093 (17)	-0.066 (15)
C7	0.098 (11)	0.034 (7)	0.061 (8)	0.002 (7)	-0.016 (7)	0.002 (6)
C8	0.097 (13)	0.086 (13)	0.096 (13)	-0.040 (11)	-0.057 (11)	0.042 (10)
C9	0.087 (12)	0.045 (8)	0.099 (12)	-0.009(7)	-0.029 (10)	0.016 (8)
C10	0.086 (9)	0.026 (6)	0.070 (9)	0.010 (6)	-0.003 (7)	0.007 (6)
C11	0.055 (7)	0.024 (5)	0.036 (5)	0.005 (4)	-0.002 (4)	0.005 (4)
C12	0.101 (12)	0.018 (5)	0.077 (9)	-0.003 (6)	0.000 (8)	0.005 (5)
C13	0.045 (7)	0.043 (6)	0.037 (6)	0.004 (5)	0.005 (5)	0.005 (5)
C14	0.038 (5)	0.026 (5)	0.042 (5)	0.001 (4)	0.007 (4)	-0.003 (4)
C15	0.048 (6)	0.039 (6)	0.055 (7)	0.013 (5)	0.000 (6)	0.011 (6)
C16	0.083 (11)	0.034 (7)	0.059 (7)	0.005 (6)	0.014 (8)	-0.009 (6)
C17	0.049 (6)	0.021 (5)	0.063 (8)	-0.013 (4)	0.007 (5)	0.003 (5)
C18	0.050 (6)	0.028 (5)	0.040 (5)	-0.001 (5)	-0.006 (5)	0.002 (4)

Geometric parameters (Å, °)

Pt1—O1	1.992 (8)	С6—Н6С	0.9600
Pt1—O2	2.001 (8)	С7—С8	1.33 (2)
Pt1—N1	2.005 (10)	С7—Н7	0.9300
Pt1—N2	2.008 (9)	C8—C9	1.46 (2)
N1—C5	1.364 (17)	С8—Н8	0.9300
N1—C1	1.40 (2)	C9—C10	1.34 (2)
N2—C11	1.338 (13)	С9—Н9	0.9300
N2—C7	1.368 (18)	C10—C11	1.422 (18)
O1—C18	1.306 (15)	C10—H10	0.9300
O2—C13	1.307 (15)	C11—C12	1.548 (19)
O3—C13	1.248 (15)	C12—H12A	0.9600
O4—C18	1.207 (15)	C12—H12B	0.9600
O5—C16	1.495 (18)	C12—H12C	0.9600
O5—H5	0.8200	C13—C14	1.515 (15)
C1—C2	1.35 (2)	C14—C18	1.513 (15)
С1—Н1	0.9300	C14—C15	1.577 (14)
C2—C3	1.37 (3)	C14—C17	1.593 (14)
С2—Н2	0.9300	C15—C16	1.52 (2)
C3—C4	1.29 (3)	C15—H15A	0.9700
С3—Н3	0.9300	C15—H15B	0.9700
C4—C5	1.44 (2)	C16—C17	1.502 (18)
C4—H4	0.9300	С16—Н16	0.9800
C5—C6	1.45 (2)	С17—Н17А	0.9700
С6—Н6А	0.9600	С17—Н17В	0.9700
С6—Н6А С6—Н6В	0.9600 0.9600	С17—Н17В	0.9700
C6—H6A C6—H6B O1—Pt1—O2	0.9600 0.9600 91.4 (4)	С17—Н17В С8—С9—Н9	0.9700
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1	0.9600 0.9600 91.4 (4) 86.3 (4)	C17—H17B C8—C9—H9 C9—C10—C11	0.9700 122.2 124.3 (13)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10	0.9700 122.2 124.3 (13) 117.9
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10	0.9700 122.2 124.3 (13) 117.9 117.9
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N1—Pt1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B	0.9700 122.2 124.3 (13) 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N1—Pt1 C11—N2—C7	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N1—Pt1 C11—N2—C7 C11—N2—Pt1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N2—Pt1 C11—N2—C7 C11—N2—Pt1 C7—N2—Pt1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C H12A—C12—H12C	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N1—Pt1 C11—N2—C7 C11—N2—Pt1 C7—N2—Pt1 C18—O1—Pt1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C H12B—C12—H12C	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5 109.5 109.5
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N1—Pt1 C11—N2—C7 C11—N2—Pt1 C7—N2—Pt1 C18—O1—Pt1 C13—O2—Pt1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—O2	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.1 (11)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N2—Pt1 C11—N2—Pt1 C11—N2—Pt1 C7—N2—Pt1 C18—O1—Pt1 C13—O2—Pt1 C16—O5—H5	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7) 109.5	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—O2 O3—C13—C14	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.1 (11) 119.2 (11)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N2—Pt1 C11—N2—Pt1 C11—N2—Pt1 C13—O2—Pt1 C13—O2—Pt1 C16—O5—H5 C2—C1—N1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7) 109.5 120.6 (16)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C12 C10—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B H12A—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—C14 O2—C13—C14	0.9700 122.2 124.3 (13) 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.1 (11) 119.2 (11) 119.5 (9)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O2—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N2—Pt1 C1—N2—Pt1 C1—N2—Pt1 C13—O2—Pt1 C13—O2—Pt1 C16—O5—H5 C2—C1—N1 C2—C1—H1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7) 109.5 120.6 (16) 119.7	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—O2 O3—C13—C14 O2—C13—C14 C18—C14—C13	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 10
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N2—Pt1 C11—N2—Pt1 C11—N2—Pt1 C7—N2—Pt1 C13—O2—Pt1 C13—O2—Pt1 C16—O5—H5 C2—C1—H1 N1—C1—H1	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7) 109.5 120.6 (16) 119.7 119.7	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12C H12A—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—O2 O3—C13—C14 O2—C13—C14 C18—C14—C13 C18—C14—C15	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 10
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O1—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N2—Pt1 C11—N2—Pt1 C11—N2—Pt1 C13—O2—Pt1 C13—O2—Pt1 C16—O5—H5 C2—C1—N1 C2—C1—H1 N1—C1—H1 C1—C2—C3	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7) 109.5 120.6 (16) 119.7 119.7 119.5 (17)	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C12 C10—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12B C11—C12—H12C H12B—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—O2 O3—C13—O2 O3—C13—C14 C18—C14—C13 C18—C14—C15 C13—C14—C15	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.1 (11) 119.2 (11) 119.5 (9) 112.6 (9) 115.5 (9)
C6—H6A C6—H6B O1—Pt1—O2 O1—Pt1—N1 O2—Pt1—N1 O2—Pt1—N2 O2—Pt1—N2 N1—Pt1—N2 C5—N1—C1 C5—N1—Pt1 C1—N1—Pt1 C11—N2—C7 C11—N2—Pt1 C13—O2—Pt1 C18—O1—Pt1 C18—O1—Pt1 C16—O5—H5 C2—C1—N1 C2—C1—H1 N1—C1—H1 C1—C2—C3 C1—C2—H2	0.9600 0.9600 91.4 (4) 86.3 (4) 177.0 (5) 177.7 (4) 87.1 (4) 95.3 (4) 117.3 (12) 125.5 (10) 117.0 (10) 118.4 (10) 122.5 (8) 119.0 (8) 119.0 (7) 118.4 (7) 109.5 120.6 (16) 119.7 119.7 119.5 (17) 120.3	C17—H17B C8—C9—H9 C9—C10—C11 C9—C10—H10 C11—C10—H10 N2—C11—C10 N2—C11—C12 C10—C11—C12 C10—C11—C12 C11—C12—H12A C11—C12—H12B H12A—C12—H12C H12A—C12—H12C H12B—C12—H12C H12B—C12—H12C O3—C13—C14 O2—C13—C14 C18—C14—C13 C18—C14—C15 C18—C14—C15 C18—C14—C17	0.9700 122.2 124.3 (13) 117.9 117.9 118.2 (11) 118.8 (10) 122.9 (11) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 121.1 (11) 119.2 (11) 119.5 (9) 112.6 (9) 114.5 (9)

supplementary materials

C4—C3—C2	122.5 (16)	C15—C14—C17	86.1 (8)
С4—С3—Н3	118.8	C16—C15—C14	87.7 (9)
С2—С3—Н3	118.8	C16—C15—H15A	114.0
C3—C4—C5	118.6 (16)	C14—C15—H15A	114.0
С3—С4—Н4	120.7	C16—C15—H15B	114.0
С5—С4—Н4	120.7	C14—C15—H15B	114.0
N1—C5—C4	120.4 (14)	H15A—C15—H15B	111.2
N1—C5—C6	117.1 (13)	O5—C16—C17	116.1 (12)
C4—C5—C6	122.4 (14)	O5-C16-C15	113.9 (13)
С5—С6—Н6А	109.5	C17—C16—C15	91.5 (9)
С5—С6—Н6В	109.5	O5—C16—H16	111.3
H6A—C6—H6B	109.5	С17—С16—Н16	111.3
С5—С6—Н6С	109.5	C15—C16—H16	111.3
Н6А—С6—Н6С	109.5	C16—C17—C14	87.7 (9)
H6B—C6—H6C	109.5	С16—С17—Н17А	114.0
C8—C7—N2	125.5 (14)	С14—С17—Н17А	114.0
С8—С7—Н7	117.3	С16—С17—Н17В	114.0
N2—C7—H7	117.3	С14—С17—Н17В	114.0
C7—C8—C9	117.9 (16)	H17A—C17—H17B	111.2
С7—С8—Н8	121.0	O4—C18—O1	119.6 (11)
С9—С8—Н8	121.0	O4—C18—C14	121.4 (11)
C10—C9—C8	115.6 (15)	O1—C18—C14	118.9 (10)
С10—С9—Н9	122.2		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С15—Н15В…ОЗ	0.97	2.48	2.826 (16)	101
C12—H12A···O2	0.96	2.58	3.170 (16)	120

Fig. 1